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1 Introduction

The AdS/CFT correspondence [1] offers new profound insights into a strong coupling dy-

namics of gauge theories. In the basic case of the duality between type IIB superstrings on

AdS5 × S5 and N = 4 SYM one may even hope to find an exact solution of the tree-level

string theory, and, therefore, to solve the dual gauge theory in the ‘t Hooft limit. This

would be done by employing the conjectured quantum integrability of the AdS5 × S5 su-

perstring which is supported by classical integrability [2] of the Green-Schwarz action [3],

and by one-loop integrability of the dual gauge theory [4, 5].

Solving string theory is a multi-step problem. One starts by imposing the light-cone

gauge for the AdS5 × S5 superstring, and obtains a 2-d non-linear sigma model defined on

a cylinder of circumference equal to the light-cone momentum P+ [6, 7]. The gauge-fixed

Hamiltonian is equal to E − J and, therefore, its spectrum determines the spectrum of

scaling dimensions of gauge theory operators. To find the spectrum, one first takes the

decompactification limit [8]–[11], i.e. the limit where P+ goes to infinity, while keeping

the string tension g fixed. Then, one is left with a world-sheet theory on a plane which

has a massive spectrum and well-defined asymptotic states (particles). This reduces the

spectral problem to finding dispersion relations for particles and the S-matrices describing

their pairwise scattering. Quantum integrability then implies factorization of multi-particle

scattering into a sequence of two-body events [12].

To define the S-matrix, one should deal with particles with arbitrary world-sheet mo-

menta which requires to give up the level-matching condition. As a result, the manifest
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psu(2|2) ⊕ psu(2|2) ⊂ psu(2, 2|4) symmetry algebra of the light-cone string theory gets

enhanced by two central charges [13]. The same centrally-extended symmetry algebra also

appears in the dual gauge theory [14].

An important observation made in [14] is that the dispersion relation for fundamental

particles is uniquely determined by the symmetry algebra of the model. Moreover, the ma-

trix structure of their S-matrix is uniquely fixed by the algebra, the Yang-Baxter equation

and the generalized physical unitarity condition [14–16].

The S-matrix is thus determined up to an overall scalar function σ(p1, p2) — the so-

called dressing factor [17]. Its functional form was conjectured in [17] by discretizing the

integral equations [18] describing classical spinning strings [19, 20], and using insights from

gauge theory [21]. It was proposed in [22] that the dressing factor satisfies a crossing

equation. Combining the functional form of the dressing factor together with the first two

known orders in the strong coupling expansion [17, 23], a set of solutions to the crossing

equation in terms of an all-order strong coupling asymptotic series has been proposed [24].

Opposite to the strong coupling expansion, gauge theory perturbative expansion of the

dressing factor is in powers of g and it has a finite radius of convergence. An interesting

proposal for the exact dressing factor has been put forward in [25], and passed many

tests [26]–[29]. Thus, one can adopt the working assumption that the exact dressing factor

and, therefore, the S-matrix are established.

Having found the exact dispersion relation and the S-matrix, the next step is to de-

termine bound states of the model. Analysis reveals that all bound states are those of

elementary particles [30], and comprise into the tensor product of two 4Q-dim atypical

totally symmetric multiplets of the centrally-extended symmetry algebra su(2|2) [31].

Having understood the spectrum of the light-cone string sigma model on a plane, one

has to “upgrade” the findings to a cylinder. All physical string configurations (and dual

gauge theory operators) are characterized by a finite value of P+, and as such they are

excitations of a theory on a cylinder. The first step in determining the finite-size spectrum

is to impose the periodicity condition on the Bethe wave function. This leads to a system of

equations on the particle momenta known as the Bethe-Yang equations. In the AdS/CFT

context these equations are usually referred to as the asymptotic Bethe ansatz [32, 33].

The AdS5×S5 string S-matrix has a complicated matrix structure which results at the end

in a set of nested Bethe equations [14, 34, 35].

The Bethe-Yang equations determine any power-like 1/P+ corrections to energy of

multi-particle states. To find the exact spectrum for finite values of string tension and P+,

one may try to generalize the thermodynamic Bethe ansatz (TBA), originally developed

for relativistic integrable models [36], to the light-cone string theory.

The TBA approach might allow one to relate the exact string spectrum to proper

thermodynamic quantities of the mirror theory obtained from the light-cone string model

by means of a double-Wick rotation. The mirror theory lives on a plane at temperature

1/P+, and, in particular, its Gibbs free energy is equal to the density of the ground state

energy of the string model. It should be also possible to find the energies of excited states by

analytic continuation of the TBA equations, see e.g [39]–[43] for some relativistic examples.

Since the light-cone string model is not Lorentz-invariant, the mirror theory is governed
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by a different Hamiltonian and therefore has very different dynamics. Thus, to implement

the TBA approach one has to study the mirror theory in detail. The first step in this

direction has been taken in [16], where the Bethe-Yang equations for fundamental particles

of the mirror model were derived. Another result of [16] was the classification of mirror

bound states according to which they comprise into the tensor product of two 4Q-dim

atypical totally anti-symmetric multiplets of the centrally-extended algebra su(2|2). This

observation was used in the derivation [37] of the four-loop scaling dimension of the Konishi

operator by means of Lüscher’s formulae [38]. We consider this derivation as prime evidence

for the validity of the mirror theory approach.

In this paper we take the next step in studying the mirror theory, and identify the states

that contribute in the thermodynamic limit. We use the Bethe-Yang equations of [16] and

the fusion procedure, see e.g. [44], to write down the equations for the complete spectrum

of the mirror theory. We use the observation of [31] that the equations for auxiliary roots

can be interpreted as the Lieb-Wu equations for an inhomogeneous Hubbard model [45],

and notice that the inhomogeneous Hubbard model becomes homogeneous in the limit of

the infinite real momenta of the mirror particles. This observation allows us to formulate

the string hypothesis for the mirror theory. We show that the solutions of the Bethe-Yang

equations in the thermodynamic limit arrange themselves into Bethe string configurations

similar to the ones appearing in the Hubbard model [46]. We then derive a set of equations

describing the bound states of the mirror theory and the Bethe string configurations. These

equations can be readily used to derive a set of TBA equations for the free energy of the

mirror model following a textbook route, see e.g. [46]. The resulting equations are however

complicated and we postpone their discussion for future publication.

1.1 Bethe-Yang equations

The Bethe-Yang equations for fundamental particles and bound states of the mirror theory

defined on a circle of large circumference R are derived by using the su(2|2) ⊕ su(2|2)-
invariant S-matrix [16] and the fusion procedure, and are of the form

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

2∏

α=1

KII
(α)∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

−1 =
KI∏

l=1

y
(α)
k − x−

l

y
(α)
k − x+

l

√
x+

l

x−
l

KIII
(α)∏

l=1

v
(α)
k − w

(α)
l − i

g

v
(α)
k − w

(α)
l + i

g

(1.1)

1 =

KII
(α)∏

l=1

w
(α)
k − v

(α)
l + i

g

w
(α)
k − v

(α)
l − i

g

KIII
(α)∏

l=1
l 6=k

w
(α)
k − w

(α)
l − 2i

g

w
(α)
k − w

(α)
l + 2i

g

.

Here p̃k is the real momentum of a physical mirror particle which can be either a funda-

mental particle or a Q-particle bound state. We will often refer to such a particle as a

Q-particle, a 1-particle being a fundamental one. Then, KI is the number of Q-particles,

and KII
(α) and KIII

(α) are the numbers of auxiliary roots y
(α)
k and w

(α)
k of the second and third
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levels of the nested Bethe ansatz, and α = 1, 2 because the scattering matrix is the tensor

product of the two su(2|2)-invariant S-matrices. We will often refer to K’s as to excitation

numbers. The parameters v are related to y as v = y+ 1
y
. The parameters x± are functions

of the string tension g, the momentum p̃ and the number of constituents Q of a Q-particle,

and their explicit expressions can be found in appendix A, eq. (A.6).

The function SQkQl

sl(2) (xk, xl) is the two-particle scalar S-matrix which describes the

scattering of a Qk-particle with momentum p̃k and a Ql-particle with momentum p̃l in the

sl(2) sector of the mirror theory. The S-matrix can be found by using the fusion procedure

and the following sl(2) S-matrix of the fundamental particles

S11
sl(2)(x1, x2) = σ−2

12 s12 , s12 =
x+

1 − x−
2

x−
1 − x+

2

1 − 1
x−
1 x+

2

1 − 1
x+
1 x−

2

, (1.2)

where σ12 is the dressing factor [17] that depends on x± and g. Its exact form was conjec-

tured in [25] but we will not need it here. For complex values of the momenta p̃1, p̃2 the

S-matrix (1.2) exhibits a pole at x−
1 = x+

2 , and it is this pole that leads to the existence of

a Q-particle bound state satisfying the bound state equation [16]

x−
1 = x+

2 , x−
2 = x+

3 , . . . , x−
Q−1 = x+

Q . (1.3)

The equation has a unique solution in the physical region of the mirror theory defined

by Im x± < 0 [16], and it is used in the fusion procedure. It implies that the S-matrix

SQkQl

sl(2) (xk, xl) depends only on the total real momenta of the Q-particles.

Since S11
sl(2)(xk, xl) can be also written as

S11
sl(2)(x1, x2) =

u1 − u2 + 2i
g

u1 − u2 − 2i
g

×




1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

σ12




−2

, (1.4)

the Q-particle bound state equations (1.3) can be cast in the form

uj − uj+1 −
2i

g
= 0 ⇐⇒ x−

j = x+
j+1 , j = 1, 2, . . . , Q − 1 . (1.5)

Then, the solution to (1.5) is simply given by the Bethe string

uj = u + (Q + 1 − 2j)
i

g
, j = 1, . . . , Q , u ∈ R , (1.6)

where the real rapidity u determines the momentum of the bound state through eq. (A.13)

from appendix A.

By taking the complex conjugate of the first Bethe-Yang equation in (1.1) one can

easily see that the unitarity of the S-matrix (1.2) implies that for real values of p̃k the

auxiliary roots y either come in pairs y2 = 1/y∗1 or lie on unit circle. As a consequence the

variables v and w come in complex conjugate pairs, or are real.

It is the set of Bethe-Yang equations (1.1) we will be using in the paper to analyze

the solutions which contribute in the thermodynamic limit. However, before starting the

analysis we would like to show the relation of the last two equations in (1.1) for the auxiliary

roots to the Lieb-Wu equations for the Hubbard model.
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1.2 Relation to the Lieb-Wu equations

Let us recall that the Lieb-Wu equations are the Bethe equations for the Hubbard model

and have the form [45, 46]

e−iφeiqkL =

M∏

l=1

λl − sin qk − iU
4

λl − sin qk + iU
4

, (1.7)

N∏

l=1

λk − sin ql − iU
4

λk − sin ql + iU
4

=

M∏

l=1
l 6=l

λk − λl − iU
2

λk − λl + iU
2

,

where U is the coupling constant of the Hubbard model, qk, k = 1, . . . , N , and λl, l =

1, . . . ,M are charge momenta and spin rapidities, respectively. The arbitrary constant φ

is a twist which has the physical interpretation of the magnetic flux.

To relate the Bethe-Yang equations (1.1) for the auxiliary roots to the Lieb-Wu equa-

tions1 let us make the following change

y = ie−iq , v = 2 sin q , w = 2λ .

Then the second and third equations in (1.1) can be cast in the form

−
KI∏

l=1

e−iq
(α)
k + ix−

l

e−iq
(α)
k + ix+

l

√
x+

l

x−
l

=

KIII
(α)∏

l=1

sin q
(α)
k − λ

(α)
l + i

2g

sin q
(α)
k − λ

(α)
l − i

2g

,

KII
(α)∏

l=1

λ
(α)
k − sin q

(α)
l − i

2g

λ
(α)
k − sin q

(α)
l + i

2g

=

KIII
(α)∏

l=1
l 6=k

λ
(α)
k − λ

(α)
l − i

g

λ
(α)
k − λ

(α)
l + i

g

.

Thus, we see that if for each value of α we identify g → 2/U , KI → L, KIII
(α) → M and

KII
(α) → N , then we get two copies of equations which can be interpreted as the Bethe

equations for an inhomogeneous Hubbard model. The inhomogeneities are determined by

the real momenta of the physical particles of the mirror theory. One can easily see that

in the limit p̃ → ∞ the parameters x± behave as x+ → 0, x− → ∞ and one obtaines the

homogeneous Lieb-Wu equations (1.7) with φ = (L − 2)π/2.

The relation to the Hubbard model leads us to a natural conjecture that in the ther-

modynamic limit where KI,KII
(α),K

III
(α) → ∞ the auxiliary roots y and w will arrange

themselves in vw- and w-strings that in the case of the Hubbard model are called the k-Λ

and Λ strings [46].

2 String hypothesis

In this section we argue that in the thermodynamic limit R,KI,KII
(α),K

III
(α) → ∞ with

KI/R and so on fixed the solutions of the Bethe-Yang equations (1.1) are composed of the

following four different classes of Bethe strings

1This relation was first observed in [31] and is quite natural taking into account that the su(2|2)-invariant

S-matrix coincides with Shastry’s R-matrix [49] up to a scalar factor [31, 34].

– 5 –
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1. A single Q-particle with real momentum p̃k or, equivalently, rapidity uk

2. A single y(α)-particle corresponding to an auxiliary root y(α) with |y(α)| = 1

3. 2M roots y(α) and M roots w(α) combining into a single M |vw(α)-string

v
(α)
j = v(α) + (M + 2 − 2j)

i

g
, v

(α)
−j = v(α) − (M + 2 − 2j)

i

g
, j = 1, . . . ,M ,

w
(α)
j = v(α) + (M + 1 − 2j)

i

g
, j = 1, . . . ,M , v ∈ R . (2.1)

4. N roots w(α) combining into a single N |w(α)-string

w
(α)
j = w(α) +

i

g
(N + 1 − 2j) , j = 1, . . . , N , w ∈ R . (2.2)

This includes N = 1 which has a single real root w(α).

According to the string hypothesis for large R almost all solutions of the Bethe-Yang

equations (1.1) are approximately given by these Bethe strings with corrections decreasing

exponentially in R. The last three types are in fact the same as in the Hubbard model [46].

Every solution of (1.1) corresponds to a particular configuration of the Bethe strings, and

consists of

1. NQ Q-particles, Q = 1, 2, . . . ,∞

2. N
(α)
y y(α)-particles

3. N
(α)
M |vw

M |vw(α)-strings, α = 1, 2; M = 1, 2, . . . ,∞

4. N
(α)
N |w N |w(α)-strings, α = 1, 2; N = 1, 2, . . . ,∞

We have infinitely many states of all these kinds in the thermodynamic limit. The numbers

NQ, N
(α)
y , N

(α)
M |vw

, N
(α)
N |w are called the occupation numbers of the root configuration under

consideration, and they obey the ‘sum rules’

KI =

∞∑

Q=1

NQ , (2.3)

KII
(α) = N (α)

y +

∞∑

M=1

2M N
(α)
M |vw

,

KIII
(α) =

∞∑

M=1

M
(
N

(α)
M |vw

+ N
(α)
M |w

)
.

Solutions of the Bethe-Yang equations (1.1) with no coinciding roots, and having ex-

citation numbers satisfying the following inequalities

∞∑

Q=1

QNQ ≡ KI
tot ≥ KII

(α) ≥ 2KIII
(α) (2.4)

– 6 –
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are called regular. Solutions which differ by ordering of roots are considered as equivalent.

We expect in analogy with the Hubbard model that each regular solution corresponds

to a highest weight state of the four su(2) subalgebras of the su(2|2) ⊕ su(2|2) symmetry

algebra of the model and vise versa. The Dynkin labels are related to the excitation

numbers as follows

sα = KI
tot − KII

(α) , qα = KII
(α) − 2KIII

(α) .

This follows from the fact that a Q-particle is a bound state of Q fundamental particles.

In the remaining part of the section we explain how the Bethe string configurations

can be found.

2.1 M |vw-strings

Let us recall that to find the Q-particle bound states one should consider complex values

of particle’s momenta and take the limit R → ∞ keeping the numbers KI, KII
(α) and KIII

(α)

of the physical particles and auxiliary roots finite. The Bethe string configurations of the

auxiliary roots can be also found in a similar way.

To determine the string configurations of y
(α)
k roots we assume that the momenta of

physical particles are real, and take KI to infinity keeping KII
(α) and KIII

(α) finite.

Then, one can easily show that

KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

−→ 0 if |y(α)
k | < 1 ,

and

KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

−→ ∞ if |y(α)
k | > 1 .

If |y(α)
k | = 1 then the absolute value of the product is equal to 1.

We can consider roots with α = 1, denote them as yk, vk and wk, and assume without

loss of generality that |y1| < 1. Then the Bethe-Yang equation for y1 in (1.1) takes the

form

− 1 =

KI∏

l=1

y1 − x+
l

y1 − x−
l

√
x−

l

x+
l

KIII∏

l=1

v1 − wl + i
g

v1 − wl − i
g

−→ −1 = 0 ×
KIII∏

l=1

v1 − wl + i
g

v1 − wl − i
g

. (2.5)

Thus, to satisfy this equation we must have a root w1 such that

v1 − w1 −
i

g
= 0 =⇒ v1 = w1 +

i

g
, (2.6)

and computing y1 by using v1 we should keep the solution with |y1| < 1.

The equation for w1 takes the form

1 =

KII∏

l=1

w1 − vl − i
g

w1 − vl + i
g

KIII∏

l=2

w1 − wl + 2i
g

w1 − wl − 2i
g

−→ 1 =
1

0
×

KII∏

l=2

w1 − vl − i
g

w1 − vl + i
g

KIII∏

l=2

w1 − wl + 2i
g

w1 − wl − 2i
g

.

– 7 –
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We have to assume that there is a root v2 such that

w1 − v2 −
i

g
= 0 =⇒ v2 = w1 −

i

g
. (2.7)

Otherwise if there is no such v2 then w1 − w2 + 2i/g = 0, and, therefore from (2.6),

v1 − w2 + i/g = 0, and we get into a contradiction with (2.5).

Then the Bethe-Yang equation for y2 in (1.1) acquires the form

− 1=
KI∏

l=1

y2−x+
l

y2−x−
l

√
x−

l

x+
l

KIII∏

l=1

v2−wl+
i
g

v2−wl− i
g

−→ −1=0 ×
KI∏

l=1

y2−x+
l

y2−x−
l

√
x−

l

x+
l

KIII∏

l=2

v2−wl+
i
g

v2−wl− i
g

.

Now, if we take y2 with |y2| > 1, then we can satisfy this equation and obtain a 1|vw-string

v1 = v +
i

g
, |y1| < 1 , v2 = v − i

g
, |y2| > 1 , w1 = v , v ∈ R ,

where the roots yi satisfy y2 = 1/y∗1 .
On the other hand, if we take y2 with |y2| ≤ 1, then we get the same conditions we

had for y1 in (2.5), and, therefore, there should exist a root w2 such that

v2 − w2 −
i

g
= 0 =⇒ w2 = v2 −

i

g
= w1 −

2i

g
.

If we stop here we get a 2|vw-string with

w1 = v +
i

g
, w2 = v − i

g
, v ∈ R ,

v1 = v +
2i

g
, |y1| < 1 , v−1 = v − 2i

g
, y−1 =

1

y∗1
,

v2 = v , |y2| ≤ 1 , v−2 = v , y−2 =
1

y2
,

where we denoted y4 ≡ y−1 and y3 ≡ y−2.

If we continue the process we get a general M |vw-string characterized by the following

set of equations

wj = v + (M + 1 − 2j)
i

g
, j = 1, . . . ,M , v ∈ R , (2.8)

vj = v + (M + 2 − 2j)
i

g
, v−j = v − (M + 2 − 2j)

i

g
, j = 1, . . . ,M ,

where the corresponding roots yj and y−j are related as y−jy
∗
j = 1 if j 6= M+2

2 , and

yM+2
2

y−M+2
2

= 1 (that may happen only for even M). Computing them by using vj and

v−j we should keep the solutions with |yj| ≤ 1 and |y−j| ≥ 1 for 1 ≤ j ≤ M . It is

worth mentioning that even though vj = v−M−2+j for j = 2, 3, . . . ,M , this requirement

guarantees that all the roots yj in the string are different. In particular, for j = 2, 3, . . . ,M

the roots yj and y−M−2+j are related to each other as yjy−M−2+j = 1. It is also interesting

that Im(y1) < 0 for any string. This is the condition the parameters x± have to satisfy

because it defines the physical region of the mirror theory. In general, however, the y-roots

can take arbitrary values.
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2.2 M |w-strings

As we discussed in the previous subsection if we have a root y with |y| < 1 (or |y| > 1)

then in the thermodynamic limit we unavoidably get a M |vw-string. So, we just need to

consider the case where |y1| = 1 that is v1 is real, and takes the values −2 < v1 < 2. Then,

taking the limit KII
(α) → ∞ and keeping KIII

(α) finite, one can easily see that

KII
(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

−→ 0 if Im(w
(α)
k ) > 0 ,

and
KII

(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

−→ ∞ if Im(w
(α)
k ) < 0 ,

Thus, assuming for definiteness that Im(w1) > 0, we get that the first factor in the third

equation in (1.1) is exponentially decreasing, and therefore we should have

w2 = w1 −
2i

g
.

Then there are two cases. First we could have

Im(w2) < 0 ,

and one can easily check that the equation for w2 is satisfied. The reality condition would

also give w2 = w∗
1, and one gets a 2|w-string

w1 = w +
i

g
, w2 = w − i

g
, w ∈ R .

If Im(w2) > 0 then there is w3 = w2 − 2i
g
, and the procedure repeats itself. As a result

we get a M |w-string

wj = w +
i

g
(M − 2j + 1) , j = 1, . . . ,M , w ∈ R ,

which is the usual Bethe string.

3 Bethe-Yang equations for string configurations

Next we express the Bethe-Yang equations (1.1) in terms of real physical momenta p̃ of

Q-particles, auxiliary momenta q of y-particles with y = ie−iq, real coordinates v of centers

of vw-strings, and real coordinates w of centers of w-strings.
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3.1 Bethe-Yang equations for Q-particles

The first step is to rewrite the first equation in (1.1) in terms of momenta q
(α)
k , k =

1, . . . , N
(α)
y of y(α)-particles, and coordinates v

(α)
k,M , k = 1, . . . , N

(α)
M |vw

of vw-strings. A

simple computation gives

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

2∏

α=1

N
(α)
y∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

∞∏

M=1

N
(α)
M|vw∏

l=1

SQkM
xv (xk, v

(α)
l,M ) , (3.1)

Here the auxiliary S-matrix is given by

SQkM
xv (xk, v

(α)
l,M ) =

x−
k − y

(α)+
l,M

x+
k − y

(α)+
l,M

x−
k − y

(α)−
l,M

x+
k − y

(α)−
l,M

x+
k

x−
k

M−1∏

j=1

u−
k − v

(α)−
l,M − 2i

g
j

u+
k − v

(α)+
l,M + 2i

g
j

, (3.2)

where

y
(α)±
l,M = x(v

(α)±
l,M ) , v

(α)±
l,M = v

(α)
l,M ± i

g
M ,

and x(u) is defined in (A.15).

For what follows it is convenient to adopt the following notation

Ny = N (1)
y + N (2)

y , yl = y
(1)
l , l = 1, . . . , N (1)

y , y
N

(1)
y +l

= y
(2)
l , l = 1, . . . , N (2)

y ,

v
(1)
k,M = vk,M , v

(2)
k,M = vk,−M . (3.3)

With this notation the Bethe-Yang equations (3.1) for Q-particles take a slightly sim-

pler form

1 = eiepkR

KI∏

l=1
l 6=k

SQkQl

sl(2) (xk, xl)

Ny∏

l=1

x−
k − yl

x+
k − yl

√
x+

k

x−
k

∞∏

M=−∞
M 6=0

NM|vw∏

l=1

SQkM
xv (xk, vl,M ) , (3.4)

where the auxiliary S-matrix is given by (3.2) with

y±l,M = x(v±l,M ) , v±l,M = vl,M ± i

g
|M | . (3.5)

3.2 Bethe-Yang equations for y-particles

Next we take a y(α)-particle with the root y
(α)
k = ie−iq

(α)
k and rewrite the second equation

in (1.1) in terms of coordinates v
(α)
k,M , k = 1, . . . , N

(α)
M |vw

of vw-strings, and coordinates

w
(α)
k,N , k = 1, . . . , N

(α)
N |w of w-strings. The result is

− 1 =
KI∏

l=1

y
(α)
k − x−

l

y
(α)
k − x+

l

√
x+

l

x−
l

∞∏

M=1

N
(α)
M|vw∏

l=1

v
(α)
k − v

(α)+
l,M

v
(α)
k − v

(α)−
l,M

∞∏

N=1

N
(α)
N|w∏

l=1

v
(α)
k − w

(α)+
l,N

v
(α)
k − w

(α)−
l,N

, (3.6)

where

w
(α)±
l,N = w

(α)
l,N ± i

g
N . (3.7)

In fact we get the same equation for any root y
(α)
k , no matter if it is a root of a y-particle

or a vw-string.
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3.3 Bethe-Yang equations for w-strings

Now we take a K|w-string with the coordinates w
(α)
k,K. The last equations in (1.1) can be

written in the form

− 1 =

N
(α)
y∏

l=1

w
(α)
k − v

(α)
l + i

g

w
(α)
k − v

(α)
l − i

g

∞∏

N=1

N
(α)
N|w∏

l=1

w
(α)
k − w

(α)+
l,N + i

g

w
(α)
k − w

(α)−
l,N + i

g

w
(α)
k − w

(α)+
l,N − i

g

w
(α)
k − w

(α)−
l,N − i

g

. (3.8)

It is interesting that the equation has no dependence on the coordinates of vw-strings.

Multiplying K equations in (3.8) with the roots w
(α)
k that form the K|w-string, we get

(−1)K =

N
(α)
y∏

l=1

w
(α)+
k,K − v

(α)
l

w
(α)−
k,K − v

(α)
l

∞∏

N=1

N
(α)
N|w∏

l=1

SKN
vv (w

(α)
k,K, w

(α)
l,N ) , (3.9)

where the auxiliary S-matrix is

SKM
vv (u, u′) =

u − u′ − i
g
(K + M)

u − u′ + i
g
(K + M)

u − u′ − i
g
(M − K)

u − u′ + i
g
(M − K)

(3.10)

×
K−1∏

j=1

(
u − u′ − i

g
(M − K + 2j)

u − u′ + i
g
(M − K + 2j)

)2

.

3.4 Bethe-Yang equations for vw-strings

Finally we take a K|vw-string with the coordinates v
(α)
k,K , and multiply 2K equations (3.6)

with the roots y
(α)
k that form the K|vw-string. The resulting equation takes the form

1 =
KI∏

l=1

SQlK
xv (xl, v

(α)
k,K)

∞∏

M=1

N
(α)
M|vw∏

l=1

SKM
vv (v

(α)
k,K , v

(α)
l,M )

∞∏

N=1

N
(α)
N|w∏

l′=1

SKN
vv (v

(α)
k,K , w

(α)
l′,N ) , (3.11)

where the auxiliary S-matrix is given by (3.10).

In fact the coordinates w
(α)
l,N of the w-strings appearing in (3.11) can be excluded from

the equation if one takes into account that the product of K equations in (3.8) with roots

w
(α)
k that form a K|vw-string gives the following equation on the coordinates v

(α)
k,K of the

K|vw-string

(−1)K =

N
(α)
y∏

l=1

v
(α)+
k,K − v

(α)
l

v
(α)−
k,K − v

(α)
l

∞∏

N=1

N
(α)
N|w∏

l=1

SKN
vv (v

(α)
k,K , w

(α)
l,N ) . (3.12)

Thus, (3.11) and (3.12) lead to the following equation

(−1)K =

KI∏

l=1

SQlK
xv (xl, v

(α)
k,K)

N
(α)
y∏

l=1

v
(α)−
k,K − v

(α)
l

v
(α)+
k,K − v

(α)
l

∞∏

M=1

N
(α)
M|vw∏

l=1

SKM
vv (v

(α)
k,K, v

(α)
l,M ) (3.13)

which has no dependence on the coordinates of w-strings.

The set of the equations (3.1), (3.6), (3.11), (3.9) can be used to derive the TBA

equations for the free energy of the mirror model. These equations and their consequences

will be discussed in our forthcoming publication.
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A Mirror dispersion and parametrizations

The dispersion relation in any quantum field theory can be found by analyzing the pole

structure of the corresponding two-point correlation function. Since the correlation function

can be computed in Euclidean space, both dispersion relations in the original theory with

H and in the mirror one with H̃ are obtained from the following expression

H2
E + 4g2 sin2 pE

2
+ Q2 , (A.1)

which appears in the pole of the 2-point correlation function. Here we consider the light-

cone gauge-fixed string theory on AdS5 × S5 which has the Euclidean dispersion rela-

tion (A.1) for Q-particle bound states in the decompactification limit L ≡ P+ → ∞. The

parameter g is the string tension, and is related to the ’t Hooft coupling λ of the dual

gauge theory as g =
√

λ
2π

.

Then the dispersion relation in the original theory follows from the analytic continua-

tion (see also [8])

HE → −iH , pE → p ⇒ H2 = Q2 + 4g2 sin2 p

2
, (A.2)

and the mirror one from

HE → p̃ , pE → iH̃ ⇒ H̃ = 2arcsinh
( 1

2g

√
Q2 + p̃2

)
. (A.3)

Comparing these formulae, we see that p and p̃ are related by the following analytic con-

tinuation

p → 2i arcsinh
( 1

2g

√
Q2 + p̃2

)
, H =

√
Q2 + 4g2 sin2 p

2
→ ip̃ . (A.4)

In what follows we need to know how the parameters xQ± which satisfy the relations

xQ+ +
1

xQ+
− xQ− − 1

xQ− = 2i
Q

g
,

xQ+

xQ− = eip , (A.5)

are expressed through p̃. By using formulae (A.4), we find

xQ±(p̃) =
1

2g

(√

1 +
4g2

Q2 + p̃2
∓ 1

)
(p̃ − iQ) , (A.6)

where we fix the sign of the square root from the conditions

Im
(
xQ+

)
< 0 , Im

(
xQ−) < 0 for p̃ ∈ R . (A.7)
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As a consequence, one gets

ixQ− − ixQ+ =
i

g
(p̃ − iQ) , xQ+xQ− =

p̃ − iQ

p̃ + iQ
,

which implies that |xQ+xQ−| = 1 and |xQ+| < |xQ−| for p̃ real. Also one has

xQ±(−p̃) = − 1

xQ∓(p̃)
, (xQ±(p̃))∗ =

1

xQ∓(p̃∗)
(A.8)

Note that these relations are well-defined for real p̃, but one should use them with

caution for complex values of p̃. Our choice of the square root cut agrees with the one used

in Mathematica: it goes over the negative semi-axes.

It what follows it will be often convenient to use the u-rapidity variables defined by

u =
1

2

(
xQ+ +

1

xQ+
+ xQ− +

1

xQ−

)
= xQ+ +

1

xQ+
− i

Q

g
= xQ− +

1

xQ− + i
Q

g
,

uQ+ = xQ+ +
1

xQ+
= u + i

Q

g
, uQ− = xQ− +

1

xQ− = u − i
Q

g
. (A.9)

The u-variable is expressed in terms of p̃ as

u(p̃) =
p̃

g

√

1 +
4g2

Q2 + p̃2
, (A.10)

and it is an odd function of p̃. The parameters xQ± and p̃ are expressed in terms of u as

follows

xQ+(u) =
1

2


u +

iQ

g
− i

√

4 −
(

u +
iQ

g

)2

 , (A.11)

xQ−(u) =
1

2


u − iQ

g
− i

√

4 −
(

u − iQ

g

)2

 , (A.12)

p̃Q(u) =
ig

2



√

4 −
(

u +
iQ

g

)2

−
√

4 −
(

u − iQ

g

)2

 . (A.13)

Here the cuts in the u-plane run from ±∞ to ±2 ± iQ
g

along the horizontal lines. The

u-plane with the cuts is mapped onto the region Im
(
xQ±) < 0 which is the physical region

of the mirror theory, and therefore it is natural to expect that the u-plane should be used

in all the considerations. To describe bound states for all values of p̃ one should also add

either the both lower or both upper edges of the cuts to the u-plane. They correspond

Im
(
xQ±) = 0. This breaks the parity invariance of the model.

The energy of a Q-particle is expressed in terms of u as follows

ẼQ(u)=log
xQ−

xQ+
= 2arcsinh




√(
u2 +

√
(u2−4)2g4+2Q2(u2+4)g2+Q4

g4 − 4

)
g2 + Q2

2
√

2g




, (A.14)
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and it is positive for real values of u.

It would be also convenient to introduce the function

x(u) =
1

2

(
u − i

√
4 − u2

)
, (A.15)

with the cuts in the u-plane run from ±∞ to ±2 along the real lines, so that

xQ+(u) = x

(
u +

iQ

g

)
, xQ−(u) = x

(
u − iQ

g

)
. (A.16)

Also one has

xQ±(−u) = − 1

xQ∓(u)
, x(−u) = − 1

x(u)
, (xQ±(u))∗ =

1

xQ∓(u∗)
, (x(u))∗ =

1

x(u∗)
,

and

p̃(−u) = −p̃(u) , (p̃(u))∗ = p̃(u∗) . (A.17)
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